Microscopic Dynamics

Number of particles in the system

 D_c Cartesian dimension of the system – usually 3

 D_{KY} Kaplan-Yorke dimension

D accessible phase space domain

 \mathbf{q} ND_C dimensional vector, representing the particle positions

 \mathbf{p} ND_C dimensional vector, representing the particle momenta

 Γ 2ND_C dimensional phase space vector, representing all \mathbf{q} 's and

p's

 $\delta V_{\Gamma}(S'\Gamma)$ very small volume element of phase space centred on

 $S^{t}\Gamma \equiv \exp[iL(\Gamma)t]\Gamma$

 $p(\delta V_{\Gamma}(\Gamma);t)$ probability of observing sets of trajectories inside $\delta V_{\Gamma}(\Gamma)$ at

time t

 $p_{+/-}(t)$ probability that the dissipation function is plus/minus over the

time interval (0,t)

 M^T time reversal map

 $M^{K}\Gamma = M^{K}(x,y,z,p_{x},p_{y},p_{z})$ $= (x,-y,z,-p_{x},p_{y},-p_{z})$

Kawaski or K-map of phase space vector for

planar Couette flow,

where,
$$\dot{\mathbf{\gamma}} = \frac{\partial \mathbf{u}}{\partial \mathbf{r}} = \begin{pmatrix} 0 & \partial u_x / \partial y & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

L f-Liouvillian

 $\exp[-iL(\Gamma)t]...$ *f*-propagator

L p-Liouvillean

 $\exp[iL(\Gamma)t]$ p-propagator

 S^t ... p-propagator

 $K(\mathbf{p})$ peculiar kinetic energy

 $\Phi(\mathbf{q})$ interparticle potential energy

 $\phi_{i,j}(r_{ij})$ pair potential of atom i with atom j

 $\mathbf{r}_{ij} \equiv \mathbf{r}_j - \mathbf{r}_i$ position vector from atom *i* to atom *j*

 $r_{ij} \equiv |\mathbf{r}_j - \mathbf{r}_i|$ distance between atoms i & j

 \mathbf{F}_{ii} force on particle *i* due to particle *j*

 $\nabla_{\mathbf{q}} \equiv (\partial/\partial \mathbf{q}_1, \dots, \partial/\partial \mathbf{q}_N)$

 $H_0(\Gamma)$ internal energy, $H_0 = K + \Phi$, where K is the peculiar kinetic

energy

 $H(\Gamma)$ Hamiltonian at phase vector Γ

 $g(\Gamma)$ deviation function – even in the momenta

 H_E extended Hamiltonian for Nosé-Hoover dynamics

 K_{th} peculiar kinetic energy of thermostat

 N_{th} number of thermostatted particles

 α Gaussian thermostat multiplier

 ζ Nosé-Hoover thermostat multiplier

 τ time constant

 $\tau_{\scriptscriptstyle M}$ Maxwell time

 \dot{Q} rate of increase in heat in thermostat

 Λ phase space expansion factor

 S_i switch function

 $J(\Gamma)$ dissipative flux

 \mathbf{F}_{e} external field

m particle mass

 $T \equiv \partial \dot{\Gamma}(\Gamma)/\partial \Gamma$ stability matrix

 \exp_L latest times to left, time ordered exponential operator

tangent vector propagator

 λ_i i^{th} Lyapunov exponent

 $\lambda_{\text{max/min}}$ largest/smallest Lyapunov exponent for steady or equilibrium

state

Statistical mechanics

 \bar{A}_t time average of some phase variable, A

 $\langle A(t) \rangle$ ensemble average of A over time evolved paths

 $f(\Gamma;t)$ time dependent phases space distribution function

 $\langle . \rangle_{\mu c}$ equilibrium microcanonical ensemble average

 $\langle . \rangle_c$ equilibrium canonical enamble average

 $f_c(\Gamma)$ equilibrium canonical distribution

 $f_{\mu c}(\mathbf{\Gamma})$ equilibrium microcanical distribution

 Λ phase space expansion factor

 $\Omega(S^t\Gamma)$ the instantaneous dissipation function, at time t on a phase space

trajectory that started at phase $\,\Gamma\,$

r 3 dimensional position vector

 $\mathbf{u}(\mathbf{r},t)$ 3 dimensional local fluid streaming velocity

$$S_G$$
 fine-grained Gibbs entropy - = $k_B \int_D d\Gamma f(\Gamma) \ln(f(\Gamma)) = k_B \ln(Z_{\mu c})$

z partition function – normalization for the equilibrium phase space
distribution

 Z_c canonical partition function

Mechanical variables

Q heat

V system volume

U internal energy, $U = \langle H_0 \rangle$

W work performed on system of interest

Y purely dissipative generalized dimensionless work

X generalized dimensionless work

Thermodynamic variables

T temperature

 β Boltzmann factor (reciprocal temperature)

S entropy

A Helmholtz free energy, $= -k_B T \ln(Z_c)$

 $\langle \Sigma(t) \rangle$ entropy production

 G_0 zero frequency elastic shear modulus

 G_{∞} infinite frequency shear modulus

Transport

 γ strain (note: γ is sometimes used to fix the systems total momentum)

 $\delta \gamma$ small strain

 $\dot{\gamma}$ strain rate

 P_{xy} xy-element of the pressure tensor

 $-\langle P_{xy} \rangle$ xy-element of the ensemble averaged stress tensor

 η_{0^+} limiting zero frequency shear viscosity of a solid

 η shear viscosity of a fluid

 $\tau_{\scriptscriptstyle M}$ Maxwell relaxation time

 $J(\Gamma)$ Dissipative flux

 $J_{\perp}(k_{y},t)$ wavector dependent transverse momentum density

 $\eta_{M}(t)$ Maxwell model memory function for shear viscosity

 η_M zero frequency Maxwell shear viscosity

Mathematics

Θ Heaviside step function

 λ arbitrary parameter

 $\tilde{F}(s)$ Laplace transform of F(t)

 $\hat{F}(s)$ anti-Laplace transform of F(t)

 \oint_P cyclic integral of a periodic function

 $_{qs}\int_{a}^{b}$ quasi static integral from a to b

Note: Upper case sub/supers for people. Lower case for most else. Subscripts preferred to supers so as to not confuse powers with superscripts. Italics for algebraic initials. Nonitalics for word initials. (e.g. T-mixing not T-mixing because T stands for Transient, N-particle not N-particle.)