Microscopic Dynamics Number of particles in the system D_c Cartesian dimension of the system – usually 3 D_{KY} Kaplan-Yorke dimension D accessible phase space domain \mathbf{q} ND_C dimensional vector, representing the particle positions \mathbf{p} ND_C dimensional vector, representing the particle momenta Γ 2ND_C dimensional phase space vector, representing all \mathbf{q} 's and p's $\delta V_{\Gamma}(S'\Gamma)$ very small volume element of phase space centred on $S^{t}\Gamma \equiv \exp[iL(\Gamma)t]\Gamma$ $p(\delta V_{\Gamma}(\Gamma);t)$ probability of observing sets of trajectories inside $\delta V_{\Gamma}(\Gamma)$ at time t $p_{+/-}(t)$ probability that the dissipation function is plus/minus over the time interval (0,t) M^T time reversal map $M^{K}\Gamma = M^{K}(x,y,z,p_{x},p_{y},p_{z})$ $= (x,-y,z,-p_{x},p_{y},-p_{z})$ Kawaski or K-map of phase space vector for planar Couette flow, where, $$\dot{\mathbf{\gamma}} = \frac{\partial \mathbf{u}}{\partial \mathbf{r}} = \begin{pmatrix} 0 & \partial u_x / \partial y & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$ *L f*-Liouvillian $\exp[-iL(\Gamma)t]...$ *f*-propagator L p-Liouvillean $\exp[iL(\Gamma)t]$ p-propagator S^t ... p-propagator $K(\mathbf{p})$ peculiar kinetic energy $\Phi(\mathbf{q})$ interparticle potential energy $\phi_{i,j}(r_{ij})$ pair potential of atom i with atom j $\mathbf{r}_{ij} \equiv \mathbf{r}_j - \mathbf{r}_i$ position vector from atom *i* to atom *j* $r_{ij} \equiv |\mathbf{r}_j - \mathbf{r}_i|$ distance between atoms i & j \mathbf{F}_{ii} force on particle *i* due to particle *j* $\nabla_{\mathbf{q}} \equiv (\partial/\partial \mathbf{q}_1, \dots, \partial/\partial \mathbf{q}_N)$ $H_0(\Gamma)$ internal energy, $H_0 = K + \Phi$, where K is the peculiar kinetic energy $H(\Gamma)$ Hamiltonian at phase vector Γ $g(\Gamma)$ deviation function – even in the momenta H_E extended Hamiltonian for Nosé-Hoover dynamics K_{th} peculiar kinetic energy of thermostat N_{th} number of thermostatted particles α Gaussian thermostat multiplier ζ Nosé-Hoover thermostat multiplier τ time constant $\tau_{\scriptscriptstyle M}$ Maxwell time \dot{Q} rate of increase in heat in thermostat Λ phase space expansion factor S_i switch function $J(\Gamma)$ dissipative flux \mathbf{F}_{e} external field *m* particle mass $T \equiv \partial \dot{\Gamma}(\Gamma)/\partial \Gamma$ stability matrix \exp_L latest times to left, time ordered exponential operator tangent vector propagator λ_i i^{th} Lyapunov exponent $\lambda_{\text{max/min}}$ largest/smallest Lyapunov exponent for steady or equilibrium state ### Statistical mechanics \bar{A}_t time average of some phase variable, A $\langle A(t) \rangle$ ensemble average of A over time evolved paths $f(\Gamma;t)$ time dependent phases space distribution function $\langle . \rangle_{\mu c}$ equilibrium microcanonical ensemble average $\langle . \rangle_c$ equilibrium canonical enamble average $f_c(\Gamma)$ equilibrium canonical distribution $f_{\mu c}(\mathbf{\Gamma})$ equilibrium microcanical distribution Λ phase space expansion factor $\Omega(S^t\Gamma)$ the instantaneous dissipation function, at time t on a phase space trajectory that started at phase $\,\Gamma\,$ r 3 dimensional position vector $\mathbf{u}(\mathbf{r},t)$ 3 dimensional local fluid streaming velocity $$S_G$$ fine-grained Gibbs entropy - = $k_B \int_D d\Gamma f(\Gamma) \ln(f(\Gamma)) = k_B \ln(Z_{\mu c})$ z partition function – normalization for the equilibrium phase space distribution Z_c canonical partition function #### Mechanical variables Q heat V system volume U internal energy, $U = \langle H_0 \rangle$ W work performed on system of interest Y purely dissipative generalized dimensionless work X generalized dimensionless work # Thermodynamic variables T temperature β Boltzmann factor (reciprocal temperature) S entropy A Helmholtz free energy, $= -k_B T \ln(Z_c)$ $\langle \Sigma(t) \rangle$ entropy production G_0 zero frequency elastic shear modulus G_{∞} infinite frequency shear modulus Transport γ strain (note: γ is sometimes used to fix the systems total momentum) $\delta \gamma$ small strain $\dot{\gamma}$ strain rate P_{xy} xy-element of the pressure tensor $-\langle P_{xy} \rangle$ xy-element of the ensemble averaged stress tensor η_{0^+} limiting zero frequency shear viscosity of a solid η shear viscosity of a fluid $\tau_{\scriptscriptstyle M}$ Maxwell relaxation time $J(\Gamma)$ Dissipative flux $J_{\perp}(k_{y},t)$ wavector dependent transverse momentum density $\eta_{M}(t)$ Maxwell model memory function for shear viscosity η_M zero frequency Maxwell shear viscosity #### **Mathematics** Θ Heaviside step function λ arbitrary parameter $\tilde{F}(s)$ Laplace transform of F(t) $\hat{F}(s)$ anti-Laplace transform of F(t) \oint_P cyclic integral of a periodic function $_{qs}\int_{a}^{b}$ quasi static integral from a to b Note: Upper case sub/supers for people. Lower case for most else. Subscripts preferred to supers so as to not confuse powers with superscripts. Italics for algebraic initials. Nonitalics for word initials. (e.g. T-mixing not T-mixing because T stands for Transient, N-particle not N-particle.)